Code: 20CS6522

III B.Tech - I Semester - Regular Examinations - NOVEMBER 2024

ADVANCED JAVA PROGRAMMING (HONORS in COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks
	UNIT-I				
1	a)	Explain the structure and use of a generic	L2	CO2	6 M
		class with two type parameters. Illustrate with			
		a detailed example and describe how this			
		setup differs from a non-generic approach.			
	b)	Write a comprehensive Java program that	L3	CO2	8 M
		demonstrates the use of bounded types in			
		generics. Explain how bounded types ensure			
		type safety while allowing flexibility,			
		providing examples of both upper and lower			
		bounds in your code.			
		OR			I
2	a)	Describe the concept of wildcard arguments	L2	CO1	6 M
		('? Extends' and '? Super') in generics.		CO2	
		Provide examples showing their usage and			
		explain the scenarios where they are most			
		effective.			
	b)		L3	CO2	8 M
		method for sorting elements in an array.			
		Discuss how the generic method adapts to			
		different data types, and explain the use of			
		generic type inference in simplifying the			
		method call.			

		UNIT-II			
3	a)	Analyze the benefits and limitations of using lambda expressions in Java, especially in the context of simplifying code and reducing verbosity. Provide examples comparing traditional anonymous classes with lambda expressions, highlighting the improvements lambda expressions bring.	L4	CO3	8 M
	b)	What is a functional interface, and how does it relate to lambda expressions? Provide examples to illustrate this relationship.	L1	CO1 CO3	6 M
		OR	•		
4	a)	Explain how block lambda expressions differ from simple lambda expressions. Provide examples that demonstrate the use of block lambdas, especially when multiple statements or complex logic are involved.	L2	CO3	7 M
	b)		L4	CO1 CO3	7 M
		UNIT-III			
5	a)	Define the Java Collection Framework and explain its significance in managing groups of objects. Describe the core interfaces included in the framework and their primary functions.	L1	CO4	6 M
	b)	Critically assess the role of iterators and spliterators in traversing collections. Compare the benefits and limitations of each, and discuss situations where spliterators provide advantages over traditional iterators.	L5	CO1 CO4	8 M

		OR			
6	a)	Explain the hierarchy of the Collection Framework, focusing on interfaces like 'List', 'Set', 'Queue', and their subinterfaces. How do these interfaces define the behavior of different collections?	L2	CO4	6 M
	b)	Analyze the usage of the 'Queue' and 'Deque' interfaces in Java. Discuss the differences between a traditional 'Queue' implementation and a 'Deque', providing examples where each is more suitable.	L4	CO4	8 M
		UNIT-IV			
7	a)	Describe the role of comparators in sorting user-defined objects within collections. Provide examples demonstrating the difference between implementing <i>Comparable</i> and using <i>Comparator</i> .	L2	CO4	7 M
	b)	 	L3	CO4	7 M
		OR			
8	a)	Compare and contrast the use of built-in algorithms provided by the <i>Collections</i> class, such as sort(), binarySearch(), and reverse().	L4	CO 4	7 M
	b)	List the key methods provided by the <i>Arrays</i> class for working with collections. How do these methods simplify operations on arrays and collections?	L1	CO1 CO4	7 M

	UNIT-V					
9	a)	Write a Java program that uses the Calendar	L3	CO4	8 M	
		and GregorianCalendar classes to manage		CO5		
		and manipulate dates, such as setting specific				
		dates, comparing dates, and calculating future				
		or past dates. Discuss the benefits of using				
		these classes over the older <i>Date</i> class.				
	b)	Describe the process of pattern matching	L2	CO5	6 M	
		using regular expressions in Java. Explain the				
		basic syntax and rules of regular expressions				
		and illustrate how to match different types of				
		patterns using the Pattern and Matcher				
		classes.				
	OR					
10	a)	Compare and contrast the different pattern-	L4	CO4	8 M	
		matching options available in Java's regular		CO5		
		expression library. Analyze the performance				
		and flexibility of regular expressions for tasks				
		like validation, search, and text extraction in				
		large datasets.				
	b)	Develop a Java program that validates	L3	CO5	6 M	
		common input formats such as email				
		addresses, phone numbers, and postal codes				
		using regular expressions. Explain how you				
		designed the patterns and how they address				
		edge cases.				